报告题目:from discrete integrable system to continuous integrable system
报告人: 冯宝峰 教授 department of mathematics, university of texas-pan, american
主持人: 陈勇 教授
报告时间:2019年7月3日 周三10:30-12:30
报告地点:中北校区数学馆东202
报告摘要:
in this talk, i will give a review on recent development of integrable system, especially the discrete inegrable system. it is known that the tau-functions play a crucial role in both the continuous and discrete integrable sytems. we will start with a type of gam determinant solution and show it satisfies the hirota-miwa equation, or the discrete kadomtsev-petviashvili (kp) equation. by introducing schur polynomial, and miwa transformation, we will derive the kp hierarchy, whose reductions give rise to the korteweg-de vries (kdv) equation and boussinesq equation. then we will show by simple transformations, the discrete kp equation can be transformed into discrete modified kp equation and the discrete kp-toda lattice equation, which in turn lead to the modified kp and kp-toda hierarchy, whose reductions give the modified kdv equation and sine-gordon equation, respectively.
报告人简介:
baofeng feng(冯宝峰)教授毕业于清华大学,获物理学及数学双学士学位,后获得京都大学博士学位,现任得克萨斯大学utrgv数学与统计学院终身教授。冯博士在应用与计算数学领域建树颇丰,研究兴趣主要包括非线性波及其在流体力学与非线性光学中的应用,连续与离散可积系统以及pde的数值解法。冯教授至今已在国际知名期刊上发表学术论文70余篇,曾获6项来自美国国家科学基金、中国国家自然科学基金委员会海外及港澳学者合作研究基金、美国国防部及陆军研究局的项目资助。冯博士分别于2007年2012年两次荣获日本学术振兴会research fellow访问东京大学、京都大学、早稻田大学等,组织国际会议四次及国际会议专题30余次。